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Abstract-The dynamics of a parallel plate regenerative heat exchanger are studied using a model in which 
resistance to heat transfer is due to diffusional resistance in the fluid in the direction transverse to flow. The 
resultant Nusselt number is a function of time as well as longitudinal distance from the entrance of the 
exchanger and is not a constant, as is assumed in the traditional regerator problem. However, for reasonably 
large dimensionless longitudinal distances from the entrance, the temperature profiles agree reasonably well 
with those obtained from the traditional Anzelius-Schumann solution despite the fact that the local Nusselt 

numbers become very large for large times. 
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NOMENCLATURE 

function defined by equation (A. 14) ; 
function defined by equation (A. 15) ; 
solute concentration in fluid phase 

k/cm”1 ; 
fluid phase inlet solute concentra- 
tion [g/cm31 ; 
initial fluid phase concentration 
adjacent to the plate and in equili- 
brium with solute in adsorbed 
phase on the plate [g solute/cm3]; 
heat capacity of the plate [Cal/g OK] ; 
molecular diffusion coefficient of 
solute in fluid phase [cm’/s] ; 
heat-transfer coefficient [Cal/s cm’ 
“K], or mass-transfer coefficient 

[cm/s] ; 
J- 1; 
thermal conductivity of fluid phase 
[Cal/s cm “K] ; 
Henry’s law type equilibrium co- 
efficient, 

g adsorbed solute/cm3 adsorbed phase. 

g solute/cm3 fluid phase ’ 

characteristic length, half distance 
between the plates [cm] ; 
mass of plate per unit area of plate 
surface [g/cm21 ; 

or mass of adsorped phase per unit 
area of plate surface [g/cm21 ; 
Nusselt number, defined by equa- 
tion (15), dimensionless ; 
Laplace transform variable ; 
dimensionless time, ktJm,C,J. for 
heat-transfer case, Dt,/m,KL for 
mass-transfer case ; 
actual time [set] ; 
temperature [“K] ; 
bulk temperature of the fluid phase, 
defined by equation (14) [“K] ; 
fluid phase inlet temperature [“K] ; 
initial plate temperature [“K] ; 
defined by equation (A.12) and 
used as variable of integration ; 
dimensionless temperature or di- 
mensionless concentration, 

T - T,, c - c, 

Ti. wall - Tti Or Ci. wall - tin; 

dimensionless bulk temperature or 

concentration, i U(s, t, y) dy 
0 

dimensionless temperature or di- 
mensionless equilibrium concentra- 
tion of the solid phase ; 
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c. 

x, 

xA, 

Y, 

YA, 

2, 

constant plug flow velocity of fluid 
phase ; 
dimensionless longitudinal coordi- 
nate, crx,/vL? for heat-transfer case, 
Dx,/vL? for mass-transfer case also, 
real part of complex number ; 

actual longitudinal coordinate 

[cm] ; 
dimensionless transverse coordi- 
nate, y,/L also, imaginary part of 
complex number Z; 
actual transverse coordinate [cm] ; 
complex number. 

Greek symbols 

4 thermal diffusivity of fluid phase 

[cm2/sl ; 

% same as y ; 

5, same as x ; 
(P~(u, q), function defined by equation (A. 17) ; 
cpdu, ry), function defined by equation (A. 18) ; 

XT transfer coefficient in equation (16), 
as used by Ackermann [l]. 

INTRODUCTION 

IN MOST mathematical models formulated to 
describe the dynamics of heat regenerators or 
mass exchangers the resistance to transfer 
between solid and fluid phases is accounted for 
by means of a constant transfer coefficient 
[2, 9, 131. An extensive discussion of these 
solutions, with references, is given by Jakob [S]. 
The analogous mass transfer cases are discussed 
by Hougen and Watson [6]. Lightfoot [lo] 
discusses some of these models as pertains to 
ion exchange, chromatography and drying. 

The purpose of this paper is to examine the 
assumption that the Nusselt number is a constant. 

made in connection with regenerator studies 
[8]. To facilitate solution of the problem, a 
constant and uniform velocity profile in the fluid 
phase is assumed, i.e. plug flow. This assumption 
follows Sparrow and Spalding [16] and Siegel 
[14] in that it is felt that the essential nature of 
the results will not be changed markedly. Also, 
in the entrance region plug flow can be assumed 
because a parabolic velocity profile has not yet 
been established. 

MATHEMATICAL MODEL 

Consider a parallel plate channel through 
which a fluid of constant physical properties is 
flowing in plug flow. The energy equation can 
be written as 

v!K_aETOO. 
2x.4 ay: 

(1) 

Longitudinal diffusional effects can be shown to 
be negligible for reasonably high fluid flows, i.e. 
P&let number greater than 10 [7]. Hence, they 
are neglected in equation (1). Since velocity is 
reasonably high, the accumulation term BT/dt, 
may also be omitted from equation (1). How- 
ever, for the case of plug flow the transformation 
to a characteristic type coordinate [4, 8, 141 
will eliminate the accumulation term. At the 
plate wall we assume that all the heat leaving 

the fluid goes to increase the enthalpy of the 
plate. This results in 

k!? dT 

ay = m,C - PSatA ya=O (2) A ya=O 

No transfer across the centreline yields 

aT 

ay = 0. 
A ya=L 

The model considered attributes heat transfer 
resistance to conduction in the fluid phase 

To transform the equations into dimension- 
1 

transverse to the direction of flow. Thermal 
ess form we define the following dimensionless 

variables 
conductivities in the solid phase are assumed 
infinite in the transverse direction and the con- 
duction of heat in the direction parallel to flow 
is neglected compared with the transfer by 
convection. These are the usual assumptions 

t= 
kt, 

(4) 
m,C,,L 

(5) 
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U= 
T - Ti, 

T. wau - Tin 
(7) 

Equations (1) and (2) transform into 

au a2u o ---= 
ax ay 

au au -I I ay y=. = at y=. 
Equation (3) becomes 

au 
ay y=1 = 

0. 

(8) 

(9) 

For boundary conditions we consider the case 
of constant initial wall temperature and constant 
inlet fluid temperature. These boundary condi- 
tions become 

U(0, t, Y) = 0 (11) 

U(x, 0,O) = 1. (12) 

The heat-transfer coefficient h is defined by 

_kar 
ay = WI,,=o - Tb) (13) 

A y.4=0 

where Tb is bulk average temperature defined as 

L 

Tb = ; 
s 

Tb,, t,, y.J dy,. (14) 

0 

In dimensionless form we obtain the definition of 
the Nusselt number as 

The dimensionless parameters for the analogous 
mass transfer problem are defined in the Nomen- 
clature. 

From equation (15) it is apparent that the 
Nusselt number is a function of time as well as 
longitudinal distance x. 

MATHEMATICAL SOLUTION 

A solution to equations (8) through (12) does 
not appear to have been reported previously in 
the literature. For spherical geometry Rosen 
[ 121 presentsa solution to the same mathematical 
problem equivalent to the wall temperature 
U(x, t, 0). In Rosen’s physical model, however, 
diffusion within the solid spherical particles is 
considered rather than diffusion within the fluid 

phase. Rosen does not present the complete solu- 
tion U(x, t, y), which is needed here to determine 
the fluid bulk temperatures, U&t, x). For the 
case where there exists a resistance between fluid 
and solid phase, equation (9) is replaced by 

au -- 
ay y=. = x(u,,,, - uI,=o) (16) 

- - = X(U,,li, - u\I,=o). 
at 

(17) 

Ackermann [1] solved the system of equations 
(8) through (lo), (16), and (17) for what is equiva- 
lent to constant initial wall temperature and 
arbitrary inlet temperature U(0, t, y). He 
obtained the solution in the form of an integral 
equation which was then solved by successive 
graphical integration. 

The solutions presented in this paper to 
equations (8) through (12) were obtained by 
Laplace transforms and contour integration in 
the complex domain to invert the Laplace 
transform. This is similar to the procedure 
followed by Rosen [ 121, For details of the present 
solution see Appendix A. The resultant solution 
for U(x, t, y) is 

U(x, t, y) = 1 + - 
2 t s $w [--Wu)l. { . (2 sin xu2 - t&(u)). C&U, y) + cos [2xu2 - t&(u)] 

0 

. cpXuv Y)) du (18) 
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B,(u) = 
u(sinh 2u - sin 2~) 

cash 2u + cos 2~ 
(1% 

B&4 = 
u(sinh 2u + sin 2~) 

cash 2u + cos 2u (20) 

(PR@, Y) = 
cash yu cos (2 - y)u + cos yu cash (2 - y)u 

cash 2u -t- cos 2u 
(21) 

cprf% Y) = - 
sinh yu sin (2 - Y)u + sin yu sinh (2 - y)u 

cash 2u + cos 21.4 
(22) 

A computer program was written to evaluate 
equation (18) using Gaussian quadrature. It can 
be shown that for x < 0.044 or for t > 9x a 
boundary layer or penetration type solution is 
valid which is obtained by letting the channel 
width to be infinite : 

t+Y 
(23) 

Equation (23) satisfies the partical differential 
equation and all the boundary conditions except 
(10). However, for the region x < 0.044, the 
dimensionless gradient at y = 1 is less than 0.01; 

and for t > 9x the ratio of the gradient at 
y = 1 to the gradient at y = 0 is less than 0.01. 
Under these conditions it is felt that equation (23) 
satisfied (10) sufficiently well so that for all 
practical purposes equation (23) can be con- 
sidered a solution. The complimentary error 
function solution was used to check some of the 
numerical results obtained from equation (18) 
at an x coordinate of O-0444. The maximum 
absolute difference between the two different 
forms of solution was less than OQOO4. 

Using equations (18) and (15) we obtain as an 
expression for the Nusselt number 

- s i exp [ - tB,(u)] . [sin A(x, t, u) . B,(u) + cos A(x, t, u) . B,(u)] du 

0 

Nu = aJ (24) 

i exp [ - tB,(u)f . sin A(x, t, u) . Bz(u) [ 1 B,(u) 2- 1 - cosA(x,tlu).F 2u du 

0 

where 

A(x, t, u) = 2X2? - tB,(u). 
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For low values of t, equation (24) is difficult to 
evaluate numerically. However, when t = 0 
the boundary conditions to equation (8) become 

u=o for x=0 
(25) 

U=l for y = 0. 

The solution of which is given in Carslaw and 
Jaeger [3]. Thus, this latter solution can be used 
to obtain the Nusselt number as a function of 
x for zero t. 

BEHAVIOUR OF NUSSELT NUMBER 

AND TEMPERATURE 

Figure 2 shows a logarithmic plot of Nusselt 
number against longitudinal coordinate x with 

FIG. 1. Coordinate system for parallel plate channel 
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FIG. 2. Nusselt numbers for a regenerator. 

time as a parameter. Using the asymptotic 
solution, equation (23), it can be shown that for 
a fixed x the Nusselt number increases without 
bound as time goes to infinity. As longitudinal 
distance x tends towards infinity for a fixed 
time, the Nusselt number tends toward the 
constant value of 2.467, which corresponds to 
the value obtained at zero time for reasonably 
large x. In other words, the curves in Fig. 2 
converge towards this value. The dashed lines 
represent steady state Nusselt numbers calcu- 
lated by Solbrig and Gidaspow [ 151 for the 
two cases of (1) constant wall temperature, and 
(2) constant flux at the wall. Their calculations 
were made assuming a parabolic velocity pro- 
file. The curve for zero t and the lower dashed 
line represent the same physical situation except 
that the assumed velocity profiles are respectively 
plug flow and parabolic. Their close agreement 
for a dimensionless x coordinate greater than 
about 0.25 supports the hypothesis that Nusselt 
number results calculated assuming plug flow 
are representative of the results that would 
be obtained if a more realistic velocity profile 
were assumed. Clearly, boundary conditions 
affect the Nusselt number more than does the 
velocity profile. 

Since the results obtained here indicate 
that Nusselt numbers for regenerators are not 
constant at a given longitudinal coordinate but 
vary with time, the question naturally arises as 
to how serious is the error that is obtained in 
assuming a constant Nusselt number to calculate 
temperature profiles using the classical Anzelius- 
Schumann solution [9]. Figure 3 compares 
temperature profiles obtained from equation (18) 
with profiles obtained from the Anzelius- 
Schumann curves [9] using a constant Nusselt 
number of 2.467. This value for Nusselt number 
is a logical a priori value since it is the theoretical 
steady value for laminar plug flow with a con- 
stant wall temperature. As can be seen from 
Fig. 3 there is some discrepancy between the 
profiles. Figure 4 is the same type plot but based 
on a Nusselt number of 3. For this case, closer 
agreement is obtained between the two different 
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Nusselt number of 3. 
on 

solutions that most practical 
assumption of a Nussett 

number a bad one.at least those instances 
the dimensionIess x values under con- 

sideration are relatively large. Such would 
usually be the case when the fluid phase is a 
gas. Major disagreement between the Anzelius- 
Schumann solution and the present solution 
occurs in the values for wall temperature at low 

_ 

0 o-2 0.4 0 6 0.8 IO 

Dimensionless transverse coor- 
dinate, y,/L 

FIG. 5. Transverse temperature or concentration profiles 
at dimensionless longitudinal coordinate Y = 1. 

values of x. For small values of x in our model 
the Nusselt number becomes very large, as is 
true in every Graetz problem ; therefore, the wall 
temperature at x = 0 becomes equal to the 
inlet temperature. In Schumann’s analysis [13], 
however, the resistance to heat transfer remains 
constant throughout the length of the channel. 
This gives rise to a wall temperature at zero x 
different from the inlet temperature, which of 
course contradicts the usual observation, except 
for those cases when back conduction is im- 
portant. The present model is believed to be 
more realistic near the entrance region than the 
Anzelius-Schumann model. 
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If desired, transverse temperature profiles 
within the fluid phase may be calculated using 
equation (18). Figure 5 shows how these profiles 
vary with time at a fixed longitudinal coordinate 
of x of one. It will be noticed that a transverse 
temperature distribution exists at zero t. Mathe- 
matically we are not free to specify the tempera- 
ture throughout when the variable t equals zero 
because the system of equations would then be 
over determined. At a given longitudinal station, 
say x = &j, time t is counted from the moment 
the disturbance which was introduced at x equals 
zero reaches the point x = r that is, Q/v time 
units after the fluid was introduced at x equals 

zero. During the period that this front traveled 
from x = 0 to x = < it was receiving heat from 
the wall, which was at the initial dimensionless 
temperature of one. Thus we obtain an initial 
transverse temperature distribution which will 
be different at each x coordinate. Siegel [14] 
gives an excellent discussion of this phenomenon. 

CONCLUSIONS 

(1) A mathematical model for a regenerator has 
been proposed in which resistance to heat 
transfer is assumed to be due to the finite 
thermal conductivity of the fluid phase. Exact 
solutions for the temperature profile and the 
Nusselt number are presented as integrals 
which can be easily evaluated by computer 
using Gaussian quadrature. 

(2) It was found that the Nusselt number does 
not reach a steady state value with time but 
continues to increase indefinitely. Thus, 
Nusselt numbers range from those obtained 
for the case of constant wall temperature 
to infinity. Comparison of the temperature 
profiles with those calculated from the 
Anzelius-Schumann curves [9] based on a 
constant Nusselt number of 3 indicates, 
however, that the simpler Anzelius- 
Schumann solution may be used without 
serious error except in the entrance, where 
the wall temperature as predicted by the 
Anzelius-Schumann curve is in error. 
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system of equations 

au a2u o 
--2= ax ay 

au au -I I ay y=o = at y=o 
64.2) 

au 
ay y=l = 

0 

U(x, 0,O) = 1 

(A.3) 

(A.4) 

U(0, t, y) = 0. 64.5) 

Let D(s, t, y) denote the Laplace transform with 
respect to x of U(x, t, y). In the Laplace domain 
we obtain as the solution of (A.l) through (A.5) 

V(s, t, y) = f (cash Jsy - tanh Js sinh Jsy) 

(A.11 

First, we will evaluate the third term on the 
right in equation (A.8). 

x exp (- t 4s tanh 4s). (A.6) 

For convenience in what follows, denote x by 
5 and y by q. Henceforth we will refer to U(x, t, y) 
as U({, t, q). To determine U(& t, q) we will invert 
(A.6) by means of the inversion theorem. Let 
f(s) denote U(s, t, q), where the dependence of 
t and q has been suppressed. Similarly let F(t) 
denote U(& t, q). Applying the inversion theorem 
gives 

yt i0 

F(i;) = .l-lim 
s 2niP+” ~_is 

eZE f(z) dz (A.7) 

where y is chosen such that f(z) is analytic for 
Re(z) > y. We see that f(z) is analytic for all z 
such that Re(z) > 0. At z = 0 we have an essential 
singularity. Using the path of integration shown 
in Fig. A. 1, F(t) becomes (where z = x + iy, 
x and y are here the real and imaginary parts of 
the complex number z) 

eiYc f(iy) i dy 

n 

+ & 
s 

eiyr f(iy) i dy + 

6 

& jeZi f(z) dz) (A.8) 

r 

FIG. A.1. Integration contour in the complex plane. 

n/2 

1 
G s eZ5 f(z) dz = & 

s 
exp (65: e’) f(t e”) 

r -42 
n/2 

1 
tiead = - 

27t f 
-n/2 

- t (,/E) e812 tanh [(Jc) eie’“]} 6 eie de 
ai2 ni 

1 

-+211 s 
~(0, r) do = $ 

i 
de = ; 

-n/2 -II,‘2 

as 6 -+O. 

Hence we have 

Noting that 

(A.9) 

(A. 10) 

--L 

1 

27t s 
e- iYc f( - iy) dy 

we obtain as shown in Churchill [5] where I is the semicircle of radius c 
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cc 

F(t) = i + b& 
s 

[eiyc f(iy) + epiy5 

6 

B,(u) = 
u(sinh 2u + sin 2~) 

cash 2u + cos 2u ’ 
(A.15) 

m 

f(- iy)] dy = i + ‘,i; i 
s 

We can also obtain cp(iy, q) in the form 
Re[eiYc; f(iy)] dy 

My, V) = %&, vl) + i&u, V) (A. 16) 
6 

(A.ll) 

where 

%(a, tl) = 
cash vu cos (2 - q) u + cos vu cash (2 - q) u 

cash 2u + cos 2u 
(A.17a) 

and 

VI@, ?) = - 
sinh vu sin (2 - q) u + sinh (2 - q) u sin vu 

cosh2u + cos2u 
(A.17b) 

where 

eiy6 f(iy) = cp(iy, tl) +y exp [iyS - t J(iy) 

tanh &)I 
now 

J(iy) = J(y/2) (1 + i) = u(1 + i) 

where 

a = &/2). (A.12) 

Employing the fact that 

tanh J(iy) = tanh (u + iu) 

sinh 2u + i sin 2u 
= 

cash 2u + cos 2u 
(See Pennisi [ 111) 

we obtain 

$ exp [iyS - t ,/(iy) tanh ,/(iy)l 

= i exp [-t B,(u)]. (sin [y< - t B,(u)] 

- i cos [yc - t B,(u)]} (A. 13) 

B,(a) = ‘Ei2’,” ; ;i ;I) (A. 14) 

From (A.12), (A.13), (A16), and (A.18), we obtain 

Re[eiyC f(iy)] = i exp[ - t B,(u)] {sin [y< 

- t B,(u)1 . (PR& 4 + ~0s [Y< - tB,M] 

x cpl(u, vu. (A. 19) 

Substituting into equation (A. 11) and changing 
the variable of integration from y to u with the 
substitution u = J(y/2) gives 

cc 

U(<, t, q) = k + 1 
s 

i (exp [ - tB,(u)]} 

0 

{sin [2<u* - tB,(u)] . cpR(u, q) + cos [25u* 

- W41. cpXu, $1 du. (A.20) 

As u + 0 the above integrand goes to zero, so 
that the singularity in the integrand at u = 0 
is removable. As u + co, B,(u) + u. The func- 
tions (p,& q) and cpdu, v) are continuous and 
bounded for 0 < u < co. Hence the integral 
converges because of the exponential term. 
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For r] = 0 we obtain that 

U(& t, 0) = k + I x t {exp [-@i(u)]} sin [2tu2 
s 
0 0 

I 

U(<, 0,O) = ; + ; 
S’ 

“F dv = 1; 

0 

- M41 du (A.21) thus, the inlet condition is satisfied. It is not 
readily apparent, however, that equation (A.20) 

which corresponds to the result given by Rosen reduces tozero when 5: = 0. Thishas beenchecked 
except for the differences caused by the spherical numerically. Computer results were less than 
geometry he considered. It can easily be shown lo-’ for 5 = 0. 

Resume-La dynamique des tchangeurs a plaques paralleles par recuperation est ttudiee a l’aide d’un 
modele dam lequel la resistance au transport de chaleur est due a la resistance a la diffusion dans le fluide 
dans Ia direction transversale 9 l’ecoulement. Le nombre de Nusselt resultant est une fonction du temps 
aussi bien que de la distance longitudinale mise sans dimensions a partir de Pent&e de l’bchangeur et 
n’est pas constant, comme il est suppose dans le probltme traditionnel du rtcuperateur. Cependant, 
pour des distances de l’entree raisonnablement grandes, les profils de temperature sont en accord assez 
raisonnable avec ceux obtenus 5. partir de la solution traditionnelle de Anzelium-Schumann en depit du 

fait que les nombres de Nusselt locaux deviennent trts grands pour des temps assez longs. 

Zusammenfassung--Das Ubertragungsverhalten eines Paralleplatten-Regenerators wird anhand eines 
Modells untersucht, das den Warmewiderstand auf einen reinen Leitwiderstand senkrecht zur Stromungs- 
richtung zurtick ftihrt. 

Die resultierende Nusselt-Zahl ist sowohl eine Funktion der Zeit, als such der Entfernung vom Re- 
generatoreintritt, demnach also keine Konstante, wie beim traditionellen Regeneratorproblem angenom- 
men wird. 

Fur nicht zu kleine dimensionslose Entfernungen vom Eintritt stimmen die errechneten Temperatur- 
profile allerdings recht gut mit jenen nach der klassischen Anzelium-Schumann-Lisung iiberein, trotz 

der Tatsache, dass die lokalen Nusselt-Zahlen filr grosse Zeiten sehr gross werden. 

AHHoTaqllst-M:lyYaeTCH nMlranlftia IrapanJIen~Hor’O IIJIaCTJfH'faTOl'OpereHep~TIiBlioro TelIJIO- 

06MeHMlf3 IlyTeM MCIIOJIb30BalfIfH MO~RJIM, B KOTOpOfi TelIJIOO6MeH OtIpeAeJIHeTCfI JJW#j$ly3He~ 

13 ~KLI~KOCTII, TeKyueti lronepesH0 ~~II~IIH~MJ 1 rro~oksy. PeaynbTxpylouee wc~10 HyCCenbTa 

:laBMCLfT OT l3peMeHH,a T3KXFe OT IlpO~OsiIbHO~Op3CCTOHHllH OT BXOAa B TenJIOO6MeHHIU4 Ii He 

HBJIHeTCH nOCTORHHbIM, lF3K 3T0 06bFfHO IIpeAIIOJIaraeTCH B Tpa@fLViOHHO~ 33Raqe 0 peTeHe- 

paTOp3X. (~~HaKO, &JIH HeCbM3 6OJIbIIIJfX 6e3p33MepHbIX 1IpOJJOJIbHbIX PaCCTORHHm OT BXOAa 

TeMnepaTypHbIe I,pO@fnM XOpOUlO COI'.?acyFOTCFl C yNe palfee IIOJlyYeHHbIMM rIpO@fnHMH I43 

113HeCTHOrO peU,eHMR AH3eJiHyM3~~yMLIXEl HeCMOTpH Ha TOT @XT, YTO JIOKaJIbHbIe qHCJI3 

HyCcenbTa CTatfOBRT('?l Oqellb 60JIbIIIlfMlf AJIH 6OJIbUIMX BpeMeH. 


